Análise metagenômica da microbiota associada à doença periodontal

dc.contributor.advisorSaito, Daniel
dc.contributor.authorBarbosa, Anderson Nogueira
dc.contributor.co-advisorSilva, Aline Maria da
dc.date.accessioned2024-09-30T03:22:13Z
dc.date.issued2019
dc.description.abstractA periodontite é uma doença infecciosa que afeta os tecidos que envolvem e suportam os dentes. Embora algumas bactérias tenham sido associadas ao desenvolvimento dessa doença, pesquisas baseadas em técnicas moleculares podem trazer informações importantes, uma vez que uma parcela significativa da microbiota oral não pode ser detectada pelo cultivo em laboratório. Este estudo prospectivo de caso-controle objetiva avaliar a filiação taxonômica e os processos funcionais envolvidos na periodontite, com base na análise metagenômica de portadores de periodontite e indivíduos saudáveis. Amostras de saliva não-estimulada foram coletadas de indivíduos saudáveis (grupo controle, n = 13) e com periodontite (grupo caso, n = 14) atendidos na Policlínica Odontológica da UEA. O DNA total foi extraído das amostras, quantificado e submetido a sequenciamento de última geração na plataforma Illumina Hiseq2500. Após a limpeza dos dados, as sequências nucleotídicas foram submetidas ao emparelhamento pelo software PEAR, previsão taxonômica pelos programas Metaphlan 2.0 e MG-RAST (banco de dados RefSeq), aferição dos índices de diversidade alfa (Shannon-Wiener e Simpson) e beta (Whittaker) e anotação nos bancos de dados funcionais KEGG e CAZy. A diferença de frequência dos táxons e categorias funcionais entre os grupos foi avaliada pelo teste de Kruskal-Wallis (α = 0,05). Um total de 104.004.730 sequências foram submetidas à anotação taxonômica, sendo 3.267.049 (3,23%) e 49.391.119 (47,49%) anotadas pelos Metaphlan 2.0 e MG-RAST, respectivamente. As análises estatísticas foram realizadas pelos programas STAMP e R v3.4.3. Com base nos resultados, os filos mais abundantes foram Firmicutes (29,52%), Actinobacteria (27,83%), Bacteroidetes (20,43%), Proteobacteria (17,94%), Fusobacteria (2,97%), Candidatus Saccharibacteria (0,45%), Spirochaetes (0,33%) e Tenericutes (0,03%). A análise comparativa entre os grupos de estudo evidenciou a existência de variações na abundância ou presença/ausência de táxons que podem estar associadas à doença periodontal. De fato, a constatação de frequências aumentadas de representantes dos filos Bacteroidetes, Fusobacteria, Candidatus Saccharibacteria, Spirochaetes e Synergistes no grupo de portadores de periodontite sugere um potencial papel patogênico. Ademais, a análise de correlação indica que os gêneros Eubacterium, Leptotrichia, Corynebacterium, Treponema, Parvimonas, Fusobacterium, Filifactor, Capnocytophaga, Tannerella, Bifidobacterium, Peptostreptococcus, Dialister, Catonella, Selenomonas, Campylobacter e Porphyromonas constituem um grupo com alto potencial periodontopatogênico. A análise funcional mostrou que a categoria “Metabolismo” do banco de dados KEGG foi predominante na cavidade oral, enquanto que a categoria “Processamento de informação genética” foi positivamente relacionada à doença periodontal. Outras categorias que demonstraram maior abundância no grupo doente (p < 0,05) foram “Biossíntese de aminoacil-RNAt”, “Metabolismo do piruvato” e “Vias de fixação de carbono em procariontes”. Além disso, a análise funcional revelou 11 potenciais genes bioindicadores da doença periodontal, sendo eles: rpoC, rpoB, carB, secA, uvrA, pflD, thrS, pheT, ntpA, cobQ e aspS. Conclui-se que a cavidade oral apresenta uma comunidade microbiana diversificada, característica e com alta variabilidade interindividual. No entanto, existem grupos seletos de bactérias que parecem estar associadas a condições de saúde e/ou doença. Essa microbiota é capaz de conviver em sinergismo, modulando sua atividade funcional e complexando ainda mais o mecanismo da doença. Por fim, esse estudo reitera que a cavidade oral abriga quantidade significativa de bactérias desconhecidas, assim como genes com potencial envolvimento na doença periodontal, e que o emprego de técnicas de sequenciamento de DNA de alto rendimento constitui importante ferramenta no estudo do microbioma oral.
dc.description.resumoPeriodontitis is an infectious disease that affects the tissues involving and supporting teeth. Although specific bacteria have been implicated with periodontitis, application of molecular-based research can bring additional information, since a significant parcel of the oral microbiota cannot be detected by traditional cultivation methods. This prospective case-control study aims to assess the taxonomic affiliation and functional processes involved in periodontitis, based on the metagenomic analysis of periodontitis carriers and healthy subjetcts. Saliva samples were collected from healthy (control group, n = 13) and periodontitis subjects (case group, n = 14) attended at the UEA Dental Clinic. Total DNA was extracted from the samples, quantified, and submitted to next-generation sequencing in Illumina Hiseq2500 platform. After data cleaning, the nucleotide sequences were subjected to pairing by the PEAR software, taxonomic prediction by Metaphlan 2.0 and MG-RAST (RefSeq data), measurement of alpha (Shannon-Wiener and Simpson) and beta diversity indexes (Whittaker), and functional annotation with KEGG and CAZy molecular database tools. The difference in the frequency of taxa and functional categories between groups was assessed by the Kruskal-Wallis test (α = 0.05). A total of 104.004.730 sequences was submitted to annotation, of which 3.267.049 (3.23%) and 49.391.119 (47.49%) were annotated by Metaphlan 2.0 and MG-RAST, respectively. The statistical analyzes were performed by STAMP and R v3.4.3 softwares. Based on the results, the most abundant phyla were Firmicutes (29.52%), Actinobacteria (27.83%), Bacteroidetes (20.43%), Proteobacteria (17.94%), Fusobacteria (2.97%), Candidatus Saccharibacteria (0.45%), Spirochaetes (0.33%) and Tenericutes (0.03%). Comparative analysis revealed variations in the abundance or presence/absence of taxa between the study groups that suggests an intricate association with periodontal disease. Morevoer, the increased frequencies of representatives of Bacteroidetes, Fusobacteria, Candidatus Saccharibacteria, Spirochaetes and Synergistes in the periodontitis group suggest potential pathogenic roles. Moreover, correlation analysis indicated that the genera Eubacterium, Leptotrichia, Corynebacterium, Treponema, Parvimonas, Fusobacterium, Filifactor, Capnocytophaga, Tannerella, Bifidobacterium, Peptostreptococcus, Dialister, Catonella, Selenomonas, Campylobacter and Porphyromonas embody a potential periodontopathogenic group. Functional analysis showed that KEGG’s “Metabolism” category was predominant in the oral cavity. Meanwhile, the category “Genetic Information Processing” was positively related to periodontal disease. Other categories that demonstrated higher abundance (p < 0.05) for the sick group were the Aminoacyl-tRNA biosynthesis, pyruvate metabolism, and carbon fixation pathways in prokaryotes. In addition, functional analysis resulted in 11 potential bioindicator genes of periodontal disease such as: rpoC, rpoB, carB, secA, uvrA, pflD, thrS, pheT, ntpA, cobQ e aspS. It can be concluded that the oral cavity presents a diverse microbial community with high inter-individual variability. However, there are select groups of bacteria that appear to be associated with health and disease conditions. This microbiota is able to live in synergism by modulating its functional activity and by complicating even more the mechanism of the disease. Finally, this study reiterates that the oral cavity houses a significant number of unknown bacteria, as well as genes potentially involved in periodontal disease, and that high throughput DNA sequencing constitutes an important tool in the study of the oral microbiome.
dc.identifier.urihttps://ri.uea.edu.br/handle/riuea/5973
dc.language.isopt
dc.relation.referencesAAS, J. A. et al. Defining the normal bacterial flora of the oral cavity. Journal of Clinical Microbiology, v. 43, n. 11, p. 5721-5732, 2005. ABREU, É.F. Estudo da diversidade microbiana metanogênica em reatores uasb tratando esgoto sanitário. 2007. 105p. Dissertação (Mestrado em Saneamento, Meio Ambiente e Recursos Hídricos), Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte. ARMITAGE, C.G. Periodontal diagnoses and classification of periodontal diseases. Periodontology 2000, v. 34, p. 9-21, 2004. ARUNI, W.A. et al. Filifactor alocis — a new emerging periodontal pathogen. Microbes Infect., v. 17, n. 7, p. 517–530, 2015. ASNICAR, F. et al. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PerrJ, p. 1-17, 2015. AVILA, M.; OJCIUS, D. M.; YILMAZ, O. The oral microbiota: living whit a permanent guest. DNA and Cell Biology, v. 28, n. 8, p. 405-411, 2009. BAHEKAR, A.A. et al. The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis. Am Heart J, v. 154, p. 830-837, 2007. BIKEL, S. et al. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Computational and Structural Biotechnology Journal, v. 13, p. 390-401, 2015. BOR, B. et al. Saccharibacteria (TM7) in the Human Oral Microbiome. Journal of Dental Research, v. 98, n. 5, p. 500-509, 2019. BUCHFINK, B; XIE, C; HUSON, D. Fast and sensitive protein alignment using DIAMOND. Nature Methods, v. 12, n. 1, p. 59-60, 2015. BUTLER, S.M.; CAMILLI, A. Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. PNAS, v. 101, n. 14, p. 5018–5023, 2004. CAFFESSE, R.G.A Latin American perspective of periodontology. Periodontology 2000, v. 67, p. 7-12, 2015. CAMELO-CASTILLO, A.J. et al. Subgingival microbiota in health compared to periodontitis and the influence of smoking. Front. Microbiol., v. 6, p. 1-12, 2015. CHAN, E.C.S.; MCLAUGHLIN, R. Taxonomy and virulence of oral Montreal Spirochetes. Oral Microbiol Immunol, v. 15. p. 1-9, 2000. CHALUB, L.L.F.; PÉRET, A.C.A. Performance of the community periodontal index (CPI) on periodontal status determination: focus on partial recording. Arqu bras odontol, v. 6, n. 3, p. 155-162, 2010. CHAPPLE, I.L.C. et al. Primary prevention of periodontitis: managing gingivitis. J Clin Periodontol, v. 42, p. 71-76, 2015. CHEN, C. et al. Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy. The ISME Journal, v. 12, p. 1210-1224, 2018. COLWELL, R.K. Estimates: statistical estimation of species richness and shared species from samples. Version 8.0.b1. User’s Guide and application. Disponível em: <http://viceroy.eeb.uconn.edu/estimates/EstimateSPages/EstimateS.php>. Acesso em: 15 jan. 2019. COSTALONGA, M.; HERZBERG, M.C. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett., v. 162, n. 200, p. 22–38, 2014. CRANEA, J.C.; RANDALLA, L.L. The Sec System: Protein Export in Escherichia coli. EcoSal Plus, v. 7, n. 2, p. 1-73, 2017. CROWLEY, D.J. et al. The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1. Saline Systems, v. 2, n. 11, p. 1-13, 2006. DARVEAU, R.P. Periodontitis: a polymicrobial disruption of host homeostasis. Nature Reviews Microbiology, v. 8, p. 481-490, 2010. DE PABLO, P.; DIETRICH, T.; McALINDON, T. Association of periodontal disease and tooth loss whit reumatoid arthritis in the US population. The Journal of Rheumatology, v. 35, n. 1, p. 70-76, 2008. DEGNAN, P.H.; TAGA, M.E.; GOODMAN, A.L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab, v. 20, n. 5, p. 769-778, 2014. DENG, Z. et al. Dysbiosis in chronic periodontitis: Key microbial players and interactions with the human host. Scientific Reports, v. 7, n. 3703, p. 1-13, 2017. DENKS, K. et al. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol, v. 31, n. 3, p. 58–84, 2014. DEWHIRST, F.E. et al. The human oral microbiome. Journal of Bacteriology, v. 192, n. 19, p. 5002-5017, 2010. DIEGO, I. et al. The outer-membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is a conserved C-terminal β-sandwich domain. Scientific Reports, v. 6, n. 23123, p. 1-17, 2016. DURAN-PINEDO, A. et al. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. The ISME Journal, v. 8, p. 1659–1672, 2014. FITZPATRICK, R.; WIJEYEWICKREMA, L.C.; PIKE, R.N. The gingipains: scissor and glue of the periodontal pathogen Porphyromonas gingivalis. Future Microbiol., v. 4, n. 4, p. 471-487, 2009. GIANNOBILE, W.V. et al. Saliva as a diagnostic tool for periodontal disease: current state and future directions. Periodontology 2000, v. 50, p. 52-64, 2009. GRICE, E.A. et al. A diversity profile of the human skin microbiota. Genome Research, v. 18, p. 1043-1050, 2008. GRIFFEN, A.L. et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. The ISME Journal, v. 6, p. 1176-1185, 2012. GUPTA, A.; GOVILA, V.; SAINI, A. Proteomics The research frontier periodontics. Journal of Oral Biology and Craniofacial Research. v. 5, p. 46-52, 2015. HAJISHENGALLIS, G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends in Immunology, v. 35, n. 1, p. 3-11, 2014. HAJISHENGALLIS, G. Periodontitis: from microbial immune subversion to systemic inflammation. Nature Reviews Immunology, v. 15, p. 30-44, 2015. HAMADY, M.; KNIGHT, R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res. v. 19, n. 7, p. 1141-1152, 2009. HAMMER, O.; HARPER, D.A.T.; RYAN, P.D. Past: Paleontological Statistics Software Package For Education And Data Analysis. Palaeontologia Electronica, v. 4, n. 1, 2001. HAN, Y.W. Fusobacterium nucleatum: a commensal-turned pathogen. Current Opinion in Microbiology, v. 23, p. 141–147, 2015. HENNE, K et al. Shifts in Campylobacter species abundance may reflect general microbial community in periodontitis progression. Journal of Oral Microbiology, v. 6, p. 1-6, 2014. HIGHFIELD, J. Diagnosis and classification of periodontal disease. Australian Dental Journal, v. 54, n. 1, p. 11-26, 2009. HORZ, H.; CONRADS, G. Methanogenic Archaea and oral infections – ways to unravel the black box. Journal of Oral Microbiology, v. 3, n. 5940, p. 1-9, 2011. ILLUMINA. Systems. Disponível em: <http://www.illumina.com/systems.html> Acesso em: 15/03/2018. JENKINSON, H. F.; LAMONT, R. J. Oral microbial communities in sickness and in health. Trends in Microbiology, v. 13, n. 12, p. 589-595, 2005. JIANG, S. et al. Salivary Microbiome Diversity in Caries-Free and Caries-Affected Children. International Journal of Molecular Sciences, v. 17, p. 1-13, 2016. JOLIVET-GOUGEON, A. et al. Antimicrobial treatment of Capnocytophaga infections. Int J Antimicrob Agents, v. 29, n. 4, p. 367-377, 2007. JORTH, P. et al. Metatranscriptomics of the Human Oral Microbiome during Health and Disease. mBio, v. 5, n. 2, p. 1-10, 2014. KATO, Y. et al. Molecular detection of human periodontal pathogens in oral swab specimens from dogs in Japan. J Vet Dent, Summer, v. 28, n. 2, p. 84-89, 2011. KEIJSER, B. J. et al. Pyrosequencing analysis of the oral microflora of healthy adults. J. Dent. Res., v. 87, p. 1016–1020, 2008 KINNEY, J.S.; RAMSEIER, C. A.; GIANNOBILE, W. V. Oral fluid-base biomarkers of alveolar bone loss in periodontitis. Annals of the New York Academy of Sciences, v. 1098, p. 230-251, 2007. KOLENBRANDER, P.E. et al. Bacterial interactions and sucessions during plaque development. Periodontology 2000, v. 42, p. 47-79, 2006. KUBONIWA, M. et al. Insights into the virulence of oral biofilms: discoveries from proteomics. Expert Rev Proteomics, v. 9, n. 3, p. 311-323, 2012. KUWAHARA, T. et al. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci USA, v. 101, p. 14919–14924, 2004. LANGMEAD, B.; SALZBERG, S.L. Fast gapped-read alignment with Bowtie 2. Nature Methods, v. 9, p. 357-359, 2012. LAUDENBACH, J.M.; SIMON, Z. Common Dental and Periodontal Diseases Evaluation and Management. Medical Clinics of North American, v. 98, v. 1239-1260, 2014. LINDHE, J.; KARRING, T.; LANG, N.P. Tratado de periodontia clinica e implantologia oral. 4. ed. Rio de Janeiro: Guanabara Koogan, 2005. LING, Z. et al. Analysis of Oral Microbiota in Children with Dental Caries by PCR-DGGE and Barcoded Pyrosequencing. Microb Ecol, v. 30, n. 3, p. 677-690, 2010. LOZUPONE, C.A. et al. Diversity, stability and resilience of the human gut microbiota. Nature, v. 489, p. 220-230, 2012. LUX, R. et al. Motility and Chemotaxis in Tissue Penetration of Oral Epithelial Cell Layers by Treponema denticola. Infection and Immnity, v. 69, n. 10, p. 6276-6283, 2001. MARDIS, E.R. A decades perspective on DNA sequencing technology. Nature, v. 470, p. 198-203, 2011. MASHIMA, I.; NAKAZAWA, F. Interaction between Streptococcus spp. and Veillonella tobetsuensis in the Early Stages of Oral Biofilm Formation. Journal of Bacteriology, v. 197, n. 13, p. 2104-2111, 2015. MEGSON, Z.A. et al. Characterization of an α-l-fucosidase from the periodontal pathogen Tannerella forsythia. Virulence, v. 6, n. 3, p. 282-292, 2015. MITTAL, V. et al. A placticable approach for periodontal classification. Dental Research Journal, v. 10, n. 6, p. 697-703, 2013. NABORS, T.W.; McGLENNEN, R. C.; THOMPSON, D. Salivary testing for periodontal disease diagnosis and treatment. Dentistry Today, v.29, n. 6, p. 53-54, 2010. NATIONAL HUMAN GENOME RESEARCH INSTITUTE (NHGRI). The Human Genome Project Completion: Frequently Asked Questions. Disponível em: <https://www.genome.gov/11006943/> Acesso em: 07/08/2016. NEMOTO, Y.K.; OHARA-NEMOTO, Y. Exopeptidases and gingipains in Porphyromonas gingivalis as prerequisites for its amino acid metabolism. Japanese Dental Science Review, v. 52, 22—29, 2016. O’FLYNN, C. et al. Comparative Genomics of the Genus Porphyromonas Identifies Adaptations for Heme Synthesis within the Prevalent Canine Oral Species Porphyromonas cangingivalis. Genome Biol. Evol. v.7, n. 12, p. 3397–3413, 2015. OPPERMANN, R. V. et al. Epidemiology of periodontal diseases in adults from Latin American. Periodontology 2000, v. 67, p. 13-33, 2015. PARKS, D. et al. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics, v. 30, n. 21, p. 3123-3124, 2014. PASTER, B.J. et al. The breadth of bacterial diversity in human periodontal pocket and other oral sites. Periodontology 2000, v. 42, p. 80-87, 2006. PATHAN, M. et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics, v. 15, p. 2597–2601, 2015. PATIL, P.B.; PATIL, B. R. Saliva: A diagnostic biomarker of periodontal diseases. Journal of Indian Society of Periodontology, v. 15, n. 4, p. 310-317, 2011. PENNISI, E. A mouthful of microbes. Science, v. 307, n. 5717, p. 1899-1901, 2005. PÉREZ-CHAPARRO, P.J.; GONÇALVES, C.; FIGUEIREDO, L.C. Newly Identified Pathogens Associated with Periodontitis. J Dent Res, V. 93, N. 9, p. 846-858, 2014. PETER, K.P. et al. Association between periodontal disease and chronic obstructive pulmonary disease: a reality or just a dogma?. Journal of Periodontology, v. 84, n. 12, p. 1717-1723, 2013. PIHLSTRON, B.L.; MICHALOWICZ, B.; JOHNSON, N.W. Periodontal diseases. The Lancet, v. 366, p. 1809-1820, 2005. PONTES, C.S. Avaliação da prevalência e do perfil de virulência de Candida spp. bucais isoladas de pacientes portadores de doença periodontal e diabetes tipo 2. 2016. 175p. Dissertação (Mestrado em Saúde, Sociedade e Endemias na Amazônia, Instituto Leônidas e Maria Deane-Fiocruz, Universidade Federal do Amazonas, Manaus. QUAISER, A. et al. Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. The ISME Journal, v. 5, p. 285-304, 2011. RAM, V.S. et al. Bonebiomarkers in periodontal disease: a review article. Journal of Clinical and Diagnostic Research, v. 9, n. 1, p. 7-10, 2015. RAMOS, H.C.; RUMBO, M.; SIRARD, J. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends in Microbiology, v. 12, n. 11, p. 509-517, 2004. READY, D. et al. Disease severity associated with presence in subgingival plaque of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Tannerella forsythia, singly or in combination, as detected by nested multiplex PCR. J Clin Microbiol, v. 46, p. 3380–3383, 2008. RIESENFELD, C.S.; SCHLOSS, P.D.; HANDELSMAN, J. Metagenomics: Genomic Analysis of Microbial Communities. Annu. Rev. Genet., v. 38, p. 525-552, 2004. ROPER, J.M. The Enigma of Cobalamin (Vitamin B12) Biosynthesis in Porphyromonas gingivalis. The Journal of Biological Chemistry, v. 275, n. 51, p. 40316–40323, 2000. SAKAMOTO, M. et al. Aplication of terminal RFLP analysis to characterize oral bacterial flora in saliva of healthy subjects and patients whit periodontitis. Journal of Medical Microbiology, v. 52, p. 79-89, 2003. SANGER, F.; NICKLEN, S.; COULSON, R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. v. 74, n. 12, p. 5463-5467, 1997. SANZ, M.; KORNMAN, K. Periodontitis and adverse pregnancy outcome: consensus report of the joint EFP/AAP Workshop on periodontitis and systemic diseases. Journal of Periodontology, v. 84, n. 4, p. 164-169, 2013. SAYGUN, I. et al. Salivary infectious agents and periodontal disease status. J Periodont Res, v. 46, p. 235-239, 2011. SCHUCHMANN, K.; MÜLLER, V. Energetics and Application of Heterotrophy in Acetogenic Bacteria. Applied and Environmental Microbiology, v. 82, n. 14, p. 4056-4069, 2016. SHENDURE, J.; HANLEE, J. Next-generation DNA sequencing. Nature biotechnology, v. 26, n. 10, p. 1135-1144, 2008. SHIMAZAKI, Y. et al. Effectiveness of the salivary occult blood test as a screening method for periodontal status. Journal of Periodontology, v. 82, n. 4, p. 581-587, 2011. SIQUEIRA, J.F. et al. Cultivable bacteria in infected root canals as identified by 16S rRNA gene sequencing. Oral Microbiology Immunology, v. 22, p. 266–271, 2007. SKERKER, J.M. et al. Two-Component Signal Transduction Pathways Regulating Growth and Cell Cycle Progression in a Bacterium: A System-Level Analysis. PLoS Biology , v. 3, n. 10, p. 1771-1788, 2005. SOCRANSKY, S.S., HAFFAJEE A.D. Dental biofilms: difficult therapeutic targets. Periodontology 2000, v. 28, p. 12-55, 2002. SOCRANSKY, S.S., HAFFAJEE A.D. Periodontal microbial ecology. Periodontology 2000, v. 38, p. 135-187, 2005. SOLBIATI, J.; FRIAS-LOPES, J. Metatranscriptome of the Oral Microbiome in Health and Disease. Journal of Dental Research, v. 97, n. 5, p. 492-500, 2018. SONG, H. et al. Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens. J Periodontal Implant Sci, v. 43, n. 72-78, 2013. SONIA, R. et al. The division ‘Synergistes’. Anaerobe, v. 13, p. 99–106, 2007. SZAFRANSKI, S.P. et al. Functional biomarkers for chronic periodontitis and insights into the roles of Prevotella nigrescens and Fusobacterium nucleatum; a metatranscriptome analysis. npj Biofilms and Microbiomes, v. 15017, p. 1-7, 2015. TABA, M. et al. Diagnostic biomarkers for oral and periodontal diseases. Dental Clinics of North America, v. 49, n. 3, p. 551-vi, 2005. TAKESHITA, T. et al. The ecological proportion of indigenous bacterial populations in saliva is correlated with oral health status. ISME J, v. 3, p. 65–78, 2009. TAN, K.H. et al. Porphyromonas gingivalis and Treponema denticola Exhibit Metabolic Symbioses. PLoS Pathog, v. 10, n. 3, p. 1-11, 2014. THOMAS, F. et al. Environmental and gut Bacteroidetes: the food connection. Cellular and Infection Microbiology, v. 2, p. 1-17, 2011. THOMAS, T.; GILBERT, J.; MEYER, F. Metagenomics a guide from sampling to data analysis. Microbial Informatics and Experimentation, v. 2, n. 3, p. 1-12, 2012. TRUONG, D.T. et al. Metaphlan 2.0 for enhanced metagenomic taxonomic profiling. Nature Methods, v. 12, p. 902-903, 2015. VISSER, M.B.; ELLEN, R.P. New insights into the emerging role of oral Spirochaetes in periodontal disease. Clinical Microbiology and Infection, v. 17, p. 502-512, 2011. WANG, J. et al. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Scientific Reports, v. 3, n. 1843, p. 1-10, 2013. WEIDNER, G.; SAWERS, G. Molecular Characterization of the Genes Encoding Pyruvate Formate-Lyase and Its Activating Enzyme of Clostridium pasteurianum. Journal of Bacteriology, v. 178, n. 8, p. 2440–2444, 1996. WHITMAN, W.B.; COLEMAN, D.C.; WIEBE, W.J. Prokaryotes: The unseen majority. Proc. Natl. Acd. Sci. USA, v. 95, p. 6578-6583, 1998. WHITTAKER, R.H. Vegetation of the Siskioy Mountains, Oregon and California. Ecological Monographs, v. 30, p. 279-338, 1960. WIEBE, C.B.; PUTNINS, E.E. The periodontal disease classification system of the American Academy of Periodontology an update. JADC, v. 66, n. 11, p. 594-597, 2000. WILKE, A. et al. A RESTful API for accessing microbial community data for MG-RAST. PLoS Comput Biol, v. 11, n. 1, 2015. WOOLEY, J.C.; GODZIK, A.; FRIEDBERG, I. A primer on metagenomics. Plos Computational Biology, v. 6, n. 2, p. 1-13, 2010. XU, J. et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science, v. 299, p. 2074–2076, 2003. XU, Y. et al. Cobalamin (Vitamin B12) Induced a Shift in Microbial Composition and Metabolic Activity in an in vitro Colon Simulation. Frontiers in Microbiology, v. 9, p. 1-9, 2018. YESILKAYA, H. et al. Pyruvate Formate Lyase Is Required for Pneumococcal Fermentative Metabolism and Virulence. Infection and Immunity, v. 77, n. 12, p. 5418–5427, 2009. YILMAZ, O. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay. Microbiology, v. 154, p. 2897–2903, 2008. YOST, S. et al. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Medicine, n. 7, n. 27, p. 1-19, 2015. ZAURA, E. et al. Defining the healthy 'core microbiome' of oral microbial. BMC Microbiol, v 9, n 259, p. 1-12, 2009. ZHANG, J. et al. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, n. 30, v. 30, n. 5, p. 614-620, 2014. ZHU, W.; LOMSADZE, A.; BORODOVSKY, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Research, v. 38, n. 12, p. e132, 2010.
dc.subjectPeriodontite
dc.subjectMicrobiota
dc.subjectMetagenômico
dc.titleAnálise metagenômica da microbiota associada à doença periodontal
dc.typeTese

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
tese_uea.pdf
Tamanho:
5.31 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura Disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descrição: